Open Access Open Access  Restricted Access Subscription or Fee Access

Carapace Scute Variations of the Olive Ridley Sea Turtle (Lepidochelys olivacea): Polymerization as an Evolutionary Trend

Gennady Olegovich Сherepanov, Yegor Malashichev

Abstract


The carapace scute pattern is an important morphological feature of turtles that, along with the phylogenetic stability, has a high level of intraspecific variability. The olive ridley sea turtle (Lepidochelys olivacea; Cheloniidae) demonstrates extreme instability of pholidosis, and the aim of our study is to identify the range of the carapace scute variations in this species. We studied 655 L. olivacea hatchlings from nine natural clutches on the Southern coast of Sri Lanka and identified 120 different patterns of carapace scutes. The vertebral and pleural scutes were the most variable, ranging in number from four or five to ten. Five pairs of pleural scutes, a normal condition for some species of sea turtles, were found in only 11.9% of individuals. The hatchlings with six and seven scutes in the vertebral and pleural series were the most numerous. 13 pairs of marginal scutes were the stable norm in 92.7% of individuals. Newborn turtles with symmetrical scute patterns predominated (60.9%). Comparison of the pholidosis variability in hatchlings from different clutches revealed the presence of specific scute patterns. We assume that the clutch differences are more related to the genetic characteristics of the breeding turtles than to the influence of environmental factors. The unique variable pholidosis of L. olivacea demonstrates a trend toward scute polymerization, a rare phenomenon in turtle evolution.

Keywords


turtle carapace; scute variation; hatchling; Cheloniidae; Lepidochelys olivacea

Full Text:

PDF

References


Ascarrunz E. and Sánchez-Villagra M. R. (2022), «The macroevolutionary and developmental evolution of the turtle carapacial scutes», Vertebr. Zool., 72, 29 – 46.

Bentley B. P., McGlashan J. K., Bresette M. J., and Wyneken J. (2020), «No evidence of selection against anomalous scute arrangements between juvenile and adult sea turtles in Florida», J. Morphol., 282, 173 – 184.

Berry C. T. (1935), «A freak or evolution?» Sci. Monthly, 40, 566 – 569.

Bujes C. S. and Verrastro L. (2007), «Supernumerary epidermal shields and carapace variation in Orbigny’s slider turtles, Trachemys dorbigni (Testudines, Emydidae)», Revista Brasil Zool., 24, 666 – 672.

Cadena E. A., De Gracia C., and Combita-Romero D. A. (2023), «An Upper Miocene marine turtle from Panama that preserves osteocytes with potential DNA», J. Vertebr. Paleontol., 43(1), e2254356.

Caracappa S., Pisciotta A., Persichetti M. F., Caracappa G., Alduina R., and Arculeo M. (2016), «Nonmodal scute patterns in the Loggerhead Sea Turtle (Caretta caretta): a possible epigenetic effect?» Can. J. Zool., 94, 379 – 383.

Cherepanov G. O. (1989), «New morphogenetic data on the turtle shell: discussion on the origin of the horny and bony parts», Stud. Geol. Salmanticensia. Stud. Palaeocheloniol., 3, 9 – 24.

Cherepanov G. O. (2006), «Ontogenesis and evolution of horny parts of the turtle shell», in: I. G. Danilov and J. F. Parham (eds.), Fossil Turtle Research, St. Petersburg, pp. 19 – 33.

Cherepanov G. O. (2014), «Patterns of scute development in turtle shell: symmetry and asymmetry», Paleontol. J., 48, 1275 – 1283.

Cherepanov G. O. (2015), «Scute’s polymorphism as a source of evolutionary development of the turtle shell», Paleontol. J., 49, 1635 – 1644.

Cherepanov G., Malashichev Y., and Danilov I. (2019), «Supernumerary scutes verify a segment-dependent model of the horny shell development in turtles», J. Anat., 235, 836 – 846.

Coker R. (1910), «Diversity in the scutes of Chelonia», J. Morphol., 21, 1 – 75.

Contreras-Merida M. R. and Morales-Mérida B. A. (2021), «Relationship between incubation temperature and carapace asymmetry of neonates of Lepidochelys olivacea incubated in the Area of Multiple Use Hawaii (AUMH), Santa Rosa, Guatemala», Revista Científica, 30(1), 2224 – 5545.

Cordero-Rivera A., Ayres F. C., and Velo-Anto G. (2008), «High prevalence of accessory scutes and anomalies in Iberian populations of Emys orbicularis», Rev. Esp. Herpetol., 22, 5 – 14.

Cortés-Gómez A. A., Romero D., and Girondo M. (2018), «Carapace asymmetry: A possible biomarker for metal accumulation in adult olive Ridleys marine turtles?» Marine Pollution Bull., 129(1), 92 – 101.

Danilov I. G., Syromyatnikova E. V., and Sukhanov V. B. (2017), «Subclass Testudinata», in: A. V. Lopatin and N. V. Zelenkov (eds.), Fossil Vertebrates of Russia and Neighboring Countries. Fossil Reptiles and Birds. Part 4. Handbook for Paleontologists, Biologists, and Geologists, GEOS, Moscow, pp. 27 – 395 [in Russian].

Deraniyagala P. E. P. (1934), «Corselet reduction in some Testudinates», Ceylon. J. Sci. Ser. B, 18(2), 211 – 229.

Deraniyagala P. E. P. (1939), Tetrapod Reptiles of Ceylon. Vol. 1. Testudinates and Crocodilians, Dubau and Co., London.

Ergene S., Aymak C., and Ucar A. H. (2011), «Carapacial scute variation in green turtle (Chelonia mydas) and loggerhead turtle (Caretta caretta) hatchlings in Alata, Mersin, Turkey», Turk. J. Zool., 35, 343 – 356.

Ewert M. A. (1979), «The embryo and its egg: development and natural history», in: M. Harless and H. Morlock (eds.), Turtles. Perspectives and Research, New York, pp. 333 – 413.

Gadow H. (1899), «Orthogenetic variations in the shell of Chelonia», in: A. Willey (ed.), Zoological Results Based on Material from New Britain, New Guinea, Loyalty Islands and Elsewhere, Collected During the Years 1895, 1896, and 1897, Cambridge, pp. 207 – 222.

Gaffney E. S. (1990), «The comparative osteology of the Triassic turtle Proganochelys», Bull. Am. Mus. Nat. Hist., 194, 1 – 263.

Glen F., Broderick A. C., Godley B. J., and Hays G. C. (2003), «Incubation environment affects phenotype of naturally incubated green turtle hatchlings», J. Mar. Biol. Assoc. UK, 83(5), 1183 – 1186.

Grant C. (1937), «Orthogenetic variation», Proc. Indiana Acad. Sci., 46, 240 – 245.

Joyce W. G. and Lyson T. R. (2017), «A review of the fossil record of turtles of the clade Baenidae», Bull. Peabody Mus. Nat. Hist., 56, 147 – 183.

Kobayashi S., Morimoto Y., Kondo S., Sato T., Suganuma H., Arai K., and Watanabe G. (2017), «Sex differences and the heritability of scute pattern abnormalities in the green sea turtle from the Ogasawara archipelago, Japan», Zool. Sci., 34(4), 281 – 286.

Lynn W. G. (1937), «Variation in scutes and plates in the boxturtle, Terrapene carolina», Am. Naturalist, 71, 421 – 426.

Lynn W. G. and Ullrich M. (1950), «Experimental production of shell abnormalities in turtles», Copeia, 1950, 253 – 262.

Maffucci F., Pace A., Affuso A., Ciampa M., Treglia G., Pignalosa A., and Hochscheid S. (2020). «Carapace scute pattern anomalies in the loggerhead turtle: are they indicative of hatchling’s survival probability?» J. Zool., 310(4), 315 – 322.

Mast R. B. and Carr J. L. (1989), «Carapacial scute variation in Kemp’s ridley sea turtle (Lepidochelys kempii) hatchlings and juveniles», in: C. W. Caillouet and A. M. Landry (eds.), Proceedings of the First International Symposium on Kemp’s Ridley Sea Turtle Biology. Conservation and Management, pp. 202 – 219.

Moustakas-Verho J. E. and Cherepanov G. O. (2015), «The integumental appendages of the turtle shell: an evo-devo perspective», J. Exp. Zool. Mol. Dev. Evol., 324, 221 – 229.

Newman H. H. (1906), «The significance of scute and plate ‘abnormalities’ in Chelonia», Biol. Bull., 10, 68 – 114.

Obst F. J. (1986), Turtles, Tortoises and Terrapins, Leipzig.

Özdemir B. and Türkozan O. (2006), «Carapacial scute variation in green turtle, Chelonia mydas hatchlings in Northern Cyprus», Turk. J. Zool., 30, 141 – 146.

Pritchard P. C. H. (1969), Studies of the Systematics and Reproductive Cycle of the Genus Lepidochelys. Ph. D. Thesis, University of Florida, Gainesville.

Pritchard P. C. H. (2007), «Evolution and structure of the turtle shell», in: J. Wyneken, M. H. Godfrey, and V. Bels (eds.), Biology of Turtles, Boca Raton – London – New York, pp. 45 – 84.

Sim E. L., Booth D. T., and Limpus C. J. (2014), «Non-modal scute patterns, morphology, and locomotor performance of loggerhead (Caretta caretta) and flatback (Natator depressus) turtle hatchlings source», Copeia, 2014(1), 63 – 69.

Steenacker M., Tanabe L. K., Rusli M. U., and Fournier D. (2023), «The influence of incubation duration and clutch relocation on hatchling morphology and locomotor performances of green turtle (Chelonia mydas)», J. Exp. Marine Biol. Ecol., 569, 151954.

Telemeco R. S., Warner D. A., Reida M. K., and Janzen F. J. (2013), «Extreme developmental temperatures result in morphological abnormalities in painted turtles (Chrysemys picta): a climate change perspective», Integr. Zool., 8, 197 – 208.

Velo-Antón G., Becker C. G., and Cordero-Rivera A. (2011), «Turtle carapace anomalies: the roles of genetic diversity and environment», PLoS ONE, 6, e18714.

Zangerl R. (1969), «The turtle shell», in: C. Gans, A. A. d’Bellairs, and T. S. Parsons (eds.), Biology of the Reptilia. Vol. 1, London – New York, pp. 311 – 339.

Zangerl R. and Johnson R. G. (1957), «The nature of shield abnormalities in the turtle shell», Fieldiana Geol., 10, 341 – 362.

Zimm R., Bentley B. P., Wyneken J., and Moustakas-Verho J. E. (2017), «Environmental causation of turtle scute anomalies in ovo and in silico», Integr. Comp. Biol., 57(6), 1303 – 1311.




DOI: https://doi.org/10.30906/1026-2296-2024-31-2-105-114

Refbacks

  • There are currently no refbacks.



You can subscribe to the print or electronic version of the journal on the site of EastView Company. If you have any questions, please write to the email sales@ivis.ru