First Report of Dryophytes japonicus Tadpoles in Saline Environment

Kyongman Heo, Ye Inn Kim, Yoonhyuk Bae, Yikweon Jang, Amael Borzee

Abstract


The environment is becoming increasingly saline due to global warming and the rise of sea levels. Consequently, species living at low elevations and that are able to demonstrate tolerance to salinity are more likely to adapt to their new environment. Amphibians are especially sensitive to salinisation due to their permeable skin, which makes them osmotically sensitive. Globally, over a hundred amphibian species have demonstrated variable tolerance to salinity, but no such species has been found on the Korean peninsula. We conducted a transect survey in the intertidal zone of Sae Island, Jeju, Republic of Korea for the occurrence of Dryophytes japonicus tadpoles. We also measured salinity, distance to the water line and maximum width for each tidal pool encountered. Our results revealed the presence of D. japonicus tadpoles at all distances from the waterline, in both fresh and brackish water, and independent of the pool maximum width. Salinity and distance to the water line were not found to be of significant importance to the occurrence of the species, and calling males were present at all pools. The highest salinity measured at pools with tadpoles was 9.8 ‰, which is equal to a third of the salinity of the sea surrounding the island. This is the first such record for the species and for the Republic of Korea. Our results also highlight a potential for tolerance to salinisation of the environment in relation to climate change.

Keywords


Dryophytes japonicus; Hylidae; salinity tolerance; Korea; Brackish environment

Full Text:

PDF

References


Borzée A., Kim J. Y., Cunha M. A. M. d., Lee D., Sin E., Oh S., Yi Y., and Jang Y. (2016a), «Temporal and spatial differentiation in microhabitat use: Implications for reproductive isolation and ecological niche specification», Integr. Zool., 11(5), 375 – 387.

Borzée A., Kim J. Y., and Jang Y. (2016b), «Calling site differentiation as a mechanism for reproductive isolation in two treefrog species», Sci. Rep., 6, 32569.

Denoël M., Bichot M., Ficetola G. F., Delcourt J., Ylieff M., Kestemont P., and Poncin P. (2010), «Cumulative effects of road de-icing salt on amphibian behavior», Aquatic Toxicol., 99(2), 275 – 280.

Denver R. J. (1997), «Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis», Am. Zoologist, 37(2), 172 – 184.

Duellman W. E., Marion A. B.. and Hedges S. B. (2016), «Phylogenetics, classification, and biogeography of the treefrogs (Amphibia: Anura: Arboranae)», Zootaxa, 4104(1), 1 – 109.

Dufresnes C., Litvinchuk S. N., Borzée A., Jang Y., Li J.-T., Miura I., Perrin N., and Stöck M. (2016), «Phylogeography reveals an ancient cryptic radiation in East-Asian tree frogs (Hyla japonica group) and complex relationships between continental and island lineages», BMC Evol. Biol., 16, 253.

Dunson W. A. (1977), «Tolerance to high temperature and salinity by tadpoles of the Philippine frog, Rana cancrivora», Copeia, 1977(2), 375 – 378.

Goris R. C. and Maeda N. (2004), Guide to the Amphibians and Reptiles of Japan, Krieger Publ. Co., Malabar (Florida).

Gosner K. L. (1960), «A simplified table for staging anuran embryos and larvae with notes on identification», Herpetologica, 11(3), 183 – 190.

Gregory J. and Huybrechts P. (2006), «Ice-sheet contributions to future sea-level change», Philos. Trans. Roy. Soc. A, 364(1844), 1709 – 1732.

Haramura T. (2005), «Buergeria japonica (Ryukyu kajika frog). Oviposition behavior», Herpetol. Rev., 36(4), 429 – 430.

Hardy J. D. (1953), «Notes on the distribution of Mycrohyla carolinensis in southern Maryland», Herpetologica, 8(4), 162 – 166.

Hopkins G. R. and Brodie Jr. E. D. (2015), «Occurrence of amphibians in saline habitats: a review and evolutionary perspective», Herpetol. Monogr., 29(1), 1 – 27.

Hsu W.-T., Wu C.-S., Lai J.-C., Chiao Y.-K., Hsu C.-H., and Kam Y.-C. (2012), «Salinity acclimation affects survival and metamorphosis of crab-eating frog tadpoles», Herpetologica, 68(1), 14 – 21.

Jang Y., Hahm E. H., Lee H.-J., Park S., Won Y.-J., and Choe J. C. (2011), «Geographic variation in advertisement calls in a tree frog species: gene flow and selection hypotheses», PloS One, 6(8), e23297.

Karraker N. E. (2007), «Are embryonic and larval green frogs (Rana clamitans) insensitive to road deicing salt?» Herpetol. Conserv. Biol., 2(1), 34 – 41.

Karraker N. E., Arrigoni J., and Dudgeon D. (2010), «Effects of increased salinity and an introduced predator on lowland amphibians in Southern China: species identity matters», Biol. Conserv., 143(5), 1079 – 1086.

Lande R. and Shannon S. (1996), «The role of genetic variation in adaptation and population persistence in a changing environment», Evolution, 50(1), 434 – 437.

Park S., Jeong G., and Jang Y. (2013), «No reproductive character displacement in male advertisement signals of Hyla japonica in relation to the sympatric H. suweonensis», Behav. Ecol. Sociobiol., 67(8), 1345 – 1355.

Premo D. B. and Atmowidjojo A. H. (1987), «Dietary patterns of the crab-eating frog», Rana cancrivora, in West Java», Herpetologica, 43(1), 1 – 6.

Roh G., Borzée A., and Jang Y. (2014), «Spatiotemporal distributions and habitat characteristics of the endangered treefrog, Hyla suweonensis, in relation to sympatric H. japonica», Ecol. Inform., 24, 78 – 84.

Sanzo D. and Hecnar S. J. (2006), «Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica)», Environm. Pollut., 140(2), 247 – 256.

Shaw T.-H. (1934), «Notes on specimens of Radde’s toad from Chefoo», China J., 20, 197 – 199.

Strahan R. (1957), «The effect of salinity on the survival of larvae of Bufo melanostictus Schneider», Copeia, 1957(2), 146 – 147.

Teplitsky C., Piha H., Laurila A., and Merilä J. (2005), «Common pesticide increases costs of antipredator defenses in Rana temporaria tadpoles», Environm. Sci. Technol., 39(16), 6079 – 6085.

Thunqvist E.-L. (2004), «Regional increase of mean chloride concentration in water due to the application of deicing salt», Sci. Total Environm., 325(1), 29 – 37.

Uchiyama M. and Yoshizawa H. (1992), Salinity tolerance and structure of external and internal gills in tadpoles of the crab-eating frog, Rana cancrivora», Cell Tissue Res., 267(1), 35 – 44.

Viertel B. (1999), «Salt tolerance of Rana temporaria: spawning site selection and survival during embryonic development (Amphibia, Anura)», Amphibia–Reptilia, 20(2), 161 – 171.

Williams W. (2001), «Anthropogenic salinisation of inland waters Saline Lakes», Hydrobiologia, 466(1), 329 – 337.

Wu C.-S., Gomez-Mestre I., and Kam Y.-C. (2012), «Irreversibility of a bad start: early exposure to osmotic stress limits growth and adaptive developmental plasticity», Oecologia, 169(1), 15 – 22.

Wu C.-S. and Kam Y.-C. (2009), «Effects of salinity on the survival, growth, development, and metamorphosis of Fejervarya limnocharis tadpoles living in brackish water», Zool. Sci., 26(7), 476 – 482.




DOI: https://doi.org/10.30906/1026-2296-2019-26-2-87-90

Refbacks

  • There are currently no refbacks.



You can subscribe to the print or electronic version of the journal on the site of EastView Company. If you have any questions, please write to the email sales@ivis.ru